Project Title : Scientific studies for design	Executive Summary:
of safe blast parameters at M/s Metarock	
Pvt. Ltd., Thiruvananthapuram, Kerala	M/s Metarock Pvt. Ltd. is operating a granite stone mine at
	Aruvikkara village of Nedumangad taluk, Thiruvananthapuram
Project No.: SSP/N/377/2019-20	Dist., Kerala. It is a medium size private mining industry. Industrial
	structures such as crushers, large numbers of dwelling units and
	village are close to the mine working. Therefore, it is important to
	conduct blasting study for investigating its impact on nearby
	vicinity and optimize the blast design parameters in safe and
	productive manner using scientific methods.
	M/s Metarock Pvt. Ltd., Kerala referred the investigation of
	designing a safe and productive blast pattern to control blast
	induced ground vibration, air overpressure and flyrock (vide letter
	dated 29/09/2018) at Metarock Granite Quarry,
	Thiruvananthapuram to CSIR-Central Institute of Mining & Fuel Research, (erstwhile CMRI) Nagpur Research Centre.
	Research, (erstwine Civite) Nagpur Research Centre.
	CSIR-CIMFR Nagpur accepted the request and team visited twice
	to Metarock Granite Stone Quarry, conducted a total of 20
	experimental blast and and monitored blast induced ground
	vibration and air over pressure in various sensitive locations
	around the mine area by using three numbers of calibrated tri-axial
	seismographs (Make: Instantel, Canada).
	During field investigations, it was found that the maximum blast
	induced ground vibration level (PPV) recorded was 11.36 mm/s at
	61 m distance within the lease area of mine. Blast fragmentation
	was very good and back break was limited.
	All the recorded ground vibration in form of PPV (mm/s) and air
	over pressure (dBL) data were statistically analysed using
	regression analysis. The prediction model for Blast induced ground
	vibration with 95% Confidence Level is given below:
	$Vmax = 1928.4 (SD)^{-1.9} \text{ mm/s}$ (i)
	$R^2 = 0.89$
	where,
	where,
	<i>Vmax</i> = Peak Particle Velocity in mm/s;
	SD= Scaled Distance (D/\sqrt{Q}) in $m/kg^{0.5}$
	D = Distance of seismograph from blast site in m
	Q = Maximum explosive charge per delay in kg
	The safe permissible peak particle velocity as per the relevant
	DGMS circular is considered as 5mm/s. As no sensitive structure is
	present within 177 m, the allowable maximum charge per delay
	was calculated as 76 kg. These blast parameters along with
	permissible maximum charge per delay should be religiously
	followed to restricted ground vibrations, air overpressure and
	flyrock.